$2 C5 Seat-back Flop Fix!

One of the most annoying and inexcusably dangerous aspects of the fifth generation Corvette are the seats. Specifically, I mean the tendency of the seat-back to flop to the fully reclined position when loaded. Such as during an emergency maneuver, at the worst possible time during an autocross run, or when pulling out onto a busy highway. Each has happened to me, starting from when I bought the car in pristine condition with 13,800 miles on it.

My seats got progressively worse over the next 40K miles. First, they occasionally let loose at any intermediate position. They gradually worsened until they would not hold any position at all other than fully upright, which is not at all comfortable. At any angle more reclined, one side would slip backwards under normal sitting pressure. Either side could let loose with more load, sometimes both sides at once. Yesterday the seat-back flopped from the fully upright position. I’d had enough.

I’ve searched the internet in vain for anyone who knew how the seat-back locks worked and how to fix them. No luck. Lots of people searching for a solution, but no one finding one. I found various people who had taken their new Corvette to the dealer, supposedly had it fixed with new parts (no longer available) only to have the problem reoccur. Today, I had a little time so I pulled out the seat determined to understand and fix the issue, even if I had to weld it into one spot. Turns out welding wasn’t necessary. Two $1 hose clamps did the trick.

Here’s what you see after removing the seat bottom cushion: two cylindrical mechanisms, one for each side of the seat-back. I call them angle locks. Since they are independent in operation (but actuated together) one can slip and the other hold, creating the common situation where one side falls back and not the other. (The fiberglass construction of the back is very flexible in torsion, so it has no problem twisting until one side falls waaaay back there.


Figure 1- Seat Mechanisms with Bottom Cushion Removed


The green springs you see in the figure above are what bring the seat-back up to touch you when you actuate the lever. This way, you don’t have to pull the seat up and you then just lean back to the preferred angle and drop the lever. The angle locks are supposed to hold it at your preferred angle. Now, let’s look a little closer at one angle lock device.


Figure 2- Angle Lock Device

The main body of the lock is a steel cylinder that is pinned at the forward end. (It has to rotate a little bit during the seat-back movement.) The cylinder is holding together two split sleeves that are inserted into it. Inside the sleeves is some sort of cam-lock device. I don’t know exactly what it is, but this is the bad-boy that slips. The cam-lock is locking the axial position of a shaft that runs from inside the cylinder all the way back to where it is pinned to the lever arm of the seat-back. (You can’t see it… it’s inside the green spring.) With the shaft locked into position, the seatback is prevented from rotating about the seat-back pivot which is fixed to the lower frame.

To release the cam-lock a cable pulls tangent to the lower edge, causing it to rotate inside the split sleeves. (Two cables are pulled at the same time, actuating both devices simultaneously, more or less.) It takes very little rotational motion, at least on both of mine, to release the shaft and allow it to move in or out.

Some have thought that the weight of the driver pressing down through the foam can deflect the pull cable and release one side. Nice theory, but I don’t think so. The cables do get pinched between the seat cushion support wires and the silver metal shaft you see in the picture above, but the cables have a good amount of slack in them. I tried, but, in spite of how little motion it takes to release the shaft, I could not create any cam-lock rotation and thus seat-back release by deflecting the cables unless I pulled them totally outside the volume of the seat.

I think there’s some sort of spring inside the cylinder that serves to pre-load the cam and thus lock the shaft at all times unless pulled by the cable. It’s theoretically possible that the green springs are doing this job, doing double duty. Maybe the spring(s) get weak? Maybe, but my buddy Glenn and I came to a different conclusion.

We noticed that the gap between the split sleeves wasn’t uniform. The gap was bigger in the middle where the pull cable comes in and smaller at the end where the shaft protrudes and smaller at the other end where the sleeves disappear into the cylinder. It looks like the split sleeves have dimples at the shaft end to lock them to a ferrule of some sort that carries the shaft and holds the split sleeves together.

Our theory is that the cam locks the shaft by squeezing on it. An equal and opposite reaction (expansion) within the split sleeves is therefore required. That expansion may spread the sleeves apart over time, such as during the delivery trip from the factory to the dealership. And they probably weren’t particularly close-toleranced to begin with. So, Glenn suggested that we squeeze the two halves together better. We put hose clamps around them as close to the pull cables as we could and tightened until they cried for their Mamas.

It worked!

The seat-back now locks firmly in any intermediate position, which it would not before. I slam back into it and Holy Toledo Pro-Solo! it holds. Driving the car is so much more comfortable, not to mention much safer.

We’ll have to see if this procedure is permanent, but I can dig deep and afford to put two $1 clamps on each side if I really have to. (Glenn thinks I should market a machined and anodized aerospace-grade aluminum two-piece clamp with thread-lockable screws. What do you think…$25? Hey, maybe titanium. Yeah, that’s it. Titanium! $99.95) If anyone wants to protest me, go ahead and try. I’m not removing those hose clamps! I hereby proclaim this to be the industry-standard repair for a safety issue that’s been vexing Corvette owners for nearly 20 years.

P.S. If anyone has ever cut up or otherwise disassembled one of these angle locks I’d love to see a picture.



First T&T: This thing feels good!

Just back from two days of testing & tuning down in Birmingham at the Hoover Met(ropolitan Stadium) parking lot. What a great site- big with very good, very grippy asphalt. As usual, the ALSCCA folks were very welcoming and did great job. The Iron City Match Tour scheduled for June 17-19 should be a fantastic event. Be sure to put it on your calendar.

But, before I get to how the car handled, let me catch you up. I borrowed a set of corner weight scales from a friend (Thanks Tom!) and got another friend (thanks Glenn!) to help me do the corner weighting. The empty car weighed 3043 lbs on 3/16 of a tank and the cross weights were way off somewhere near Saturn… around 1.5% out. We got it close to 50% but I’d only disconnected the rear roll bar, not the front. I felt like I was fighting the front bar, so I knew we’d have to do it again.

The next morning Clem Tire aligned the car. They found that last years’ home alignment was good, but the big thing I had them do was reduce the toe-in in the rear. Up until now I’d wanted a very stable car so I ran 0.28 degrees of rear toe-in per tire which is 1/4″ total. This year I had them reduce it to 0.22 degrees per tire, which is right at 3/16″ total. Not a lot of difference, I grant you, but along with some other changes I was hoping to get a little more slithering from the back end this year. When a well-driven Corvette slithers like a big lizard through a slalom it looks from the rear like the car is bending in the middle around each cone.

That night Glenn and I measured the corner weights with both roll bars disconnected. We had to crank up the left-rear corner even more to get close to 50%. Here are the results, with driver and helmet in the car and 3/16 of a tank of gas:


Corvette Corner Weights After Adjustment

What does 50% cross weight mean, you may ask? For one thing, it doesn’t mean that there is equal weight on each tire. The values in the chart show that clearly and the % left and % rear numbers tell you what the static weight distribution is. Cross weight is something different.

What 50% cross actually means is that the differential left to right is equal front and back. (It’s calculated by adding the right-front weight to the left-rear weight and dividing by the total weight.) So, if the left-front has 51% of the front axle weight, then the left-rear will also have 51% of the rear axle weight when the cross weight is 50%. Per the numbers above the car actually has 51.5% on the left-front and 51.2% on the left-rear. So, the cross isn’t perfect (49.74%) but it’s less than 0.5% from 50, which is usually the target.

Why is cross weight percentage important? It helps make the handling of the car symmetrical. That is, it will have the same characteristics turning left as turning right. Equal cross can’t do this all by itself, however. Remember I said my car has more weight on the left side than the right with the driver in place? Most production cars are that way. And this condition will forever affect the handling. (Not to mention the 54% that’s on the front axle!)

How do you adjust the corner weights to get 50% cross? Well, in Street class, there’s only one way: adjust the ride height at a corner. (We can’t rearrange components.) Not all cars have such an adjustment from the factory. Luckily, the Corvette has an adjustment bolt at each corner. What I’ve done is set both fronts low and equal. Then, I adjust the rears. The right-rear was already as low as it would go and the left-rear about in the middle. So, I had to crank up the left-rear, physically lifting that corner of the car. Doing this also sends weight to the diagonally opposite corner, the right-front, and removes weight from the other two corners. Think of your car like a 4-legged table. If you shim up one leg, it teeters on that one and the diagonal. With a sprung suspension it’s not all or nothing like it is with the rigid legs of a table, so even a little air pressure difference in the tires has an effect. Set your pressures before you measure the corner weights!

Lifting the right front would have the same effect on the cross, and maybe I should have. I’ll have to think about that and what difference it might make. I had a specific reason for making all the adjustment at the rear. Raising the rear of a corvette increases the roll stiffness at the back, promoting more of that slithering talked about earlier.

So, now the car is aligned with healthy front toe-out set at the event, cross-weight balanced, shocks set stiff, more air pressure than last year, a narrower (better supported) front tire than last year… wow, it drove good!

I couldn’t believe the turn-in rate! I was early on every corner for the first three runs. The back end was wagging left and right way too much, but once I slowed the input to the steering wheel, it all came together for top PAX time for the day.

The car is definitely better in transition, slithering through the slalom the way a Corvette should. It is less stable but more fun to drive and more than one person commented to me how good the car looked on-course. I can’t tell if any peak lateral G has been lost… the site and courses didn’t allow me to figure that out, but I’m not worried. I’ve achieved what I set out to do, which was to improve transient response. If I can’t do well at Dixie Tour a month from now it won’t be the fault of the car.

With all the runs today (day 2 of the Test & Tune had very few cars) I was able to play with tire pressures and figure out the sweet spots. Minus 4 psi from baseline in the front didn’t seem to reduce peak grip, but it definitely slowed the transitions. Plus 4 psi in the front reduced front grip and induced understeer. Plus or minus 2 psi around the baseline in the front and I can’t tell the difference.

In the rear, minus 2.5 psi from the baseline was a disaster… totally uncontrollable at the 1-2 shift! Plus 2 psi and I could feel some loss of grip. So, I think I have a +/- 1 psi band figured out for the rear. Of course, this is all for one surface, on one particular day, without changing shock settings, but it gives confidence in the starting point to use in the next events leading up to Dixie Tour.



Autocross Season Prep- Assembly Complete

Big progress this weekend. First thing I did was remove the tow hitch… 15.5 lbs of steel that won’t be needed as I plan to drive on the race tires or tow to all future events. Anyone need a tire trailer?

Here’s a sanded rear disk, with Carbotech pad installed:


Red Carbotech Pads Installed- Sanded Brake Disk

Flushed out the Motul 600 brake fluid installed for the last track day and pushed in some fresh ATE Super Blue Racing fluid. Love that color!


ATE Super Blue Racing Brake Fluid

As most 5th generation Corvette owners know, you’ve got to regularly suck the clutch fluid from the reservoir with a turkey baster and replace it. It gets dirty from clutch wear material and eventually causes a sticking clutch pedal. In the pic below, you can see thru the new golden Motul 600 fluid to the bottom. (The reservoir is full to the mark.) It won’t be long before it’s so dirty you can’t see below the surface.


Clutch Fluid Reservoir

Here she sits after the test drive and initial brake pad bedding. Now she’s ready to start tuning the handling.


Ready To Go- Mismatched Wheels and All

Upcoming this weekend is two days of Test & Tune in Birmingham at Hoover Met Stadium, site of the Iron City Showdown Match Tour later in the Summer. The weekend after is our TAC/TVR-SCCA Test & Tune at Milton Frank Stadium in Huntsville, my local autocross site, and the following Saturday is our TAC Driving School with a practice autocross on Sunday, also at MFS. Then I plan to go to Knoxville for ETR-SCCA’s first points event on Sunday, March 13th. Four weekends in a row leading up to Dixie Tour March 18 -20… should be enough to shake off the rust and hopefully get the car handling the way I imagine it can.

Eight drivers in three different car types have registered in B-Street for Dixie Tour as of this moment. I know six of the other seven personally and they can all be fast. The seventh I haven’t met, but with his track record he might very well be the one to beat!

2016 Plan: Amended

I think I got something wrong in the last post.

I said “However, the sway bar, unlike the springs, acts across the car to create an increase in the total weight transferred from the inside to the outside, which tends to decrease total lateral G capability.”

Did you agree or disagree?

Some people have definitely thought this in the past. They (and I) may have been misinterpreting such statements as this, from Carroll Smith, in Tune To Win, page 38: “…the stiffness of the anti-roll bar  will both decrease roll angle and increase lateral load transfer.”

We’ve got to be careful with that statement.

The sprung mass rolls. If there is no sway bar, the inside spring extends, reducing weight on the inside tire. The outside spring compresses, increasing weight on that tire. If you could put a scale under each wheel you will measure what looks like a “weight transfer”, but it’s not, really. It’s a differential in forces at the tires and it will disappear once the car stops cornering. The amount of force differential is controlled by the mass, the lateral acceleration, the track distance and the moment arm which is the distance from the CG to the roll center. The amount of roll doesn’t matter. The stiffness of the spring doesn’t matter. The existence of a sway bar doesn’t matter.

If there is a sway bar, some of the roll energy goes into it instead of the springs. The roll is reduced, but that energy creates another force differential at the tires. The sum of the spring differential forces and the roll bar differential forces exactly equals the previous   amount with springs alone.

So, there is no negative effect on maximum cornering force due to using a stiff roll bar. There is no increase in the total amount of weight transfer, or what I call force differential.

But, during the transient, that is, during turn-in while the lateral-Gs are rising, roll stiffness from springs and bars is a good thing because it makes things happen faster. Energy absorbed by the shocks is a good thing as the effect is to (temporarily) increase roll stiffness and make things happen even faster. The force differential at the tires is going to do what it’s going to do, which is to decrease the maximum lateral-G capability due to the shape of the tire load sensitivity curve. Not much I can do about that in Street class other than set up the car as low as possible. Or, go on a diet and get a lighter helmet!